Forecasting

Creating a Nonlinear Growth Variable

March 08, 2016

I love straight lines. After all, the fastest route between any two points is a straight line. But in forecasting, going from point A to point B isn’t always as straightforward as we imagine.

There are two ways to capture long-term growth in electric sales. The best way is to correlate growth with a macroeconomic driver. The process involves endless iterations of testing alterative series until you find one that works and makes sense. For those of us with less patience, a linear trend is used, which captures the average growth over the historic period and apply it to the forecast. While this is easier, we understand that past growth won’t always happen in the future (thus the need for a macroeconomic driver).

Another option is to create a growth variable which captures growth based on a percent increase in each year. But, how do you create this growth variable in MetrixND? In Excel, creating a growth rate variable is as simple as creating the following formulas assuming that X is the growth rate.

C4=C3*(1+x)
C5=C4*(1+x).

For example, a one percent growth rate beginning with a base value of 1.0 will yield a value of 1.01 in the second period. In six periods, the value grows to 1.0510. These first six values are shown below.

Period

Index Value

1

1.0000

2

1.0100

3

1.0201

4

1.0303

5

1.0406

6

1.0510



In MetrixND, the same index can be created using four transform variables in a transformation tables. First, create two variables that serve as the base index value and the growth rate. Second, create a period index. Finally, create the growth index using the first three variables as shown below.

forecasting3

The transformation table result as well as a graph of the Growth index is shown in the final two pictures.

forecasting2

forecasting1

Keep the growth rate index in your toolbox of modeling techniques. You never know which technique will work best when developing your models and long-term forecasts.

By Mark Quan


Principal Forecast Consultant


Mark Quan est consultant principal en prévisions au sein de la division des prévisions d'Itron. Depuis qu'il a rejoint Itron en 1997, M. Quan s'est spécialisé dans les solutions de prévision énergétique à court et à long terme, ainsi que dans les projets de recherche sur la charge. Quan a développé et mis en œuvre plusieurs systèmes de prévision automatisés pour prédire la demande système du lendemain, les profils de charge et la consommation au détail pour des entreprises aux États-Unis et au Canada. Les solutions de prévision à court terme comprennent des systèmes pour le « Midwest Independent System Operator » (MISO) et le « California Independent System Operator » (CAISO). Les solutions de prévision à long terme comprennent le développement et le soutien des prévisions à long terme (ventes et clients) pour des clients tels que « Dairyland Power » et « Omaha Public Power District ». Ces prévisions comprennent des informations sur l'utilisation finale et les impacts de la gestion de la demande dans un cadre économétrique. Enfin, Quan a participé à la mise en œuvre de systèmes de recherche de charge, notamment chez Snohomish PUD. Avant de rejoindre Itron, Quan a travaillé dans les secteurs du gaz, de l'électricité et de l'entreprise chez Pacific Gas and Electric Company (PG&E), où il a participé à la restructuration du secteur, à la planification de l'électricité et à la planification du gaz naturel. M. Quan est titulaire d'un master en recherche opérationnelle de l'université de Stanford et d'une licence en mathématiques appliquées de l'université de Californie à Los Angeles.


Region Selector Select a region and country for the best experience.