In my previous post, I showed that MetrixLT can multiply two hourly data series even though the software was not designed for that specific purpose.
Finding unintended uses of MetrixLT proved to be an addicting game for our forecasting staff.
Naturally, the next question is: “If we can multiply, can we divide?”
Since division is multiplication with an inverse, we thought this might be easy. But once again, MetrixLT was not designed for performing simple arithmetic, and creating the inverse still requires dividing.
The MetrixLT Scaling Transformation is designed for two functions. First, The Scaling Transform can be used to adjust a forecast based on the historic ratio between the backcast and a Target series. If I have a forecast of hourly load for 2018 and a backcast covering 2017 (defined as the Overlap), then I can adjust the forecast based on the ratio of the Target series to the Overlap. While interesting, this is not the designed operation we will use for division.
To divide, we will use the second Scaling Transformation function designed to calibrate a bottom-up forecast to a Target series. Assume you have a Target series Y and three bottom-up series A, B, and C. The Scaling Transform can adjust A, B, and C such that Y= A+B+C. The process is two-fold. First, the Scaling Transform calculates the Calibration series (kCalib) as shown below.
kCalib = Y/(A+B+C).
Second, the Scaling Transform applies the Calibration series to each of the bottom-up series.
A’ = A x kCalib
B’ = B x kCalib
C’ = C x kCalib
The division process takes place in calculating kCalib. To divide interval data, we must make Y one series and the bottom up components (A, B, and C) and single a different series (D). The resulting ratio is the division outcome.
kCalib = Y/D.
Division can be accomplished using the following steps.
Step 1: Import Interval Data
Import the hourly data in the Interval Data table. In this example, hourly data for Zone 1 and Zone 2 are imported. I’ve highlighted the January 11, 2015 values to check our work.
Step 2: Configure A Scaling Transformation
Create a Scaling Transformation and configure the Forecast Variable and the Input Series boxes. In the Forecast Variable box, insert the hourly data used as the numerator. In the Input Series box insert the hourly data used as the denominator. In the example, Zone1 is the numerator and Zone 2 is the denominator.
When the Target Variable is undefined, the Energy Method, Peak Method and Calibration Method selections do not apply.
Step 3: Calculate the Result
Select the “!” to calculate the Scaling Transformation. The division result is stored in the kCalib variable.
I’ve highlighted the validation for January 11, 2015.
Zone 1 = 2.60
Zone 2 = 36.595
Product = (Zone 1) / (Zone 2) = 0.071048
Zone 1 values are divided by Zone 2 values and stored in a kCalib variable of the Scaling Transformation table.
Mark Quan est consultant principal en prévisions au sein de la division des prévisions d'Itron. Depuis qu'il a rejoint Itron en 1997, M. Quan s'est spécialisé dans les solutions de prévision énergétique à court et à long terme, ainsi que dans les projets de recherche sur la charge. Quan a développé et mis en œuvre plusieurs systèmes de prévision automatisés pour prédire la demande système du lendemain, les profils de charge et la consommation au détail pour des entreprises aux États-Unis et au Canada. Les solutions de prévision à court terme comprennent des systèmes pour le « Midwest Independent System Operator » (MISO) et le « California Independent System Operator » (CAISO). Les solutions de prévision à long terme comprennent le développement et le soutien des prévisions à long terme (ventes et clients) pour des clients tels que « Dairyland Power » et « Omaha Public Power District ». Ces prévisions comprennent des informations sur l'utilisation finale et les impacts de la gestion de la demande dans un cadre économétrique. Enfin, Quan a participé à la mise en œuvre de systèmes de recherche de charge, notamment chez Snohomish PUD. Avant de rejoindre Itron, Quan a travaillé dans les secteurs du gaz, de l'électricité et de l'entreprise chez Pacific Gas and Electric Company (PG&E), où il a participé à la restructuration du secteur, à la planification de l'électricité et à la planification du gaz naturel. M. Quan est titulaire d'un master en recherche opérationnelle de l'université de Stanford et d'une licence en mathématiques appliquées de l'université de Californie à Los Angeles.