Forecasting

Toward an Optimal Combined Load Forecast for System Operations

April 21, 2020

Deep penetration of non-grid connected renewable generation and storage, electric vehicle charging, smart load control and time-of-use rates create greater load volatility, which in turn, leads to eroding operational load forecast performance. To improve the system operator’s confidence with the load forecasting process, there has been a movement toward developing and presenting an ensemble of load forecasts.

The ensemble could include forecasts designed to handle the impact of rooftop solar PV and electric vehicle charging, forecasts that incorporate the impact of time-of-use pricing and smart load control, and load forecasts produced under alternative weather forecasts. If the alternative load forecasts are clustered closely around each other, then system operations may have greater confidence in the system conditions predicted by the ensemble. On the other hand, a forecast ensemble with a wide range could raise doubts about the forecasted system conditions, leading to system operators taking actions to hedge against the worst-case scenario. In effect, the forecast ensemble quantifies the plausible range of loads given the uncertainty around future meteorological conditions such as temperatures, wind and solar conditions as well as uncertainty around price sensitive loads and load control actions.

Within this new world of ensemble forecasting, there remains the reality that most downstream applications (e.g., transmission and distribution energy management systems and market models) require a single load forecast as an input. This means the load forecasting process needs a way of combing the alternative forecasts into a single “optimal” forecast that is then used for downstream processing.

Dr. Frank A. Monforte has authored a white paper that provides a high-level review of some of the econometric/operations research and data science literature on combining forecasts, and puts forth a recommendation for how to develop an optimal forecast specific to the problem of operational load forecasting.

To read the paper, go to our forecasting page at http://www.itron.com/forecasting.

Si è verificato un errore nell'elaborarazione del modello.
The following has evaluated to null or missing:
==> authorContent.contentFields  [in template "44616#44647#114455" at line 9, column 17]

----
Tip: It's the step after the last dot that caused this error, not those before it.
----
Tip: If the failing expression is known to legally refer to something that's sometimes null or missing, either specify a default value like myOptionalVar!myDefault, or use <#if myOptionalVar??>when-present<#else>when-missing</#if>. (These only cover the last step of the expression; to cover the whole expression, use parenthesis: (myOptionalVar.foo)!myDefault, (myOptionalVar.foo)??
----

----
FTL stack trace ("~" means nesting-related):
	- Failed at: contentFields = authorContent.content...  [in template "44616#44647#114455" at line 9, column 1]
----
1<#assign 
2	webContentData = jsonFactoryUtil.createJSONObject(author.getData()) 
3	classPK = webContentData.classPK 
4/> 
5 
6<#assign 
7authorContent = restClient.get("/headless-delivery/v1.0/structured-contents/" + classPK + "?fields=contentFields%2CfriendlyUrlPath%2CtaxonomyCategoryBriefs") 
8contentFields = authorContent.contentFields 
9categories=authorContent.taxonomyCategoryBriefs 
10authorContentData = jsonFactoryUtil.createJSONObject(authorContent) 
11friendlyURL = authorContentData.friendlyUrlPath 
12authorCategoryId = "0" 
13/> 
14 
15<#list contentFields as contentField > 
16   <#assign  
17	 contentFieldData = jsonFactoryUtil.createJSONObject(contentField)  
18	 name = contentField.name 
19	 /> 
20	 <#if name == 'authorImage'> 
21	    <#if (contentField.contentFieldValue.image)??> 
22	        <#assign authorImageURL = contentField.contentFieldValue.image.contentUrl />	 
23			</#if> 
24	 </#if> 
25	 <#if name == 'authorName'> 
26	    <#assign authorName = contentField.contentFieldValue.data /> 
27			<#list categories as category > 
28         <#if authorName == category.taxonomyCategoryName> 
29				     <#assign authorCategoryId = category.taxonomyCategoryId /> 
30				 </#if> 
31      </#list> 
32	 </#if> 
33	 <#if name == 'authorDescription'> 
34	    <#assign authorDescription = contentField.contentFieldValue.data /> 
35			 
36	 </#if> 
37	  
38	 <#if name == 'authorJobTitle'> 
39	    <#assign authorJobTitle = contentField.contentFieldValue.data /> 
40			 
41	 </#if> 
42 
43</#list> 
44 
45<div class="blog-author-info"> 
46	<#if authorImageURL??> 
47		<img class="blog-author-img" id="author-image" src="${authorImageURL}" alt="" /> 
48	</#if> 
49	<#if authorName??> 
50		<#if authorName != ""> 
51			<p class="blog-author-name">By <a id="author-detail-page" href="/w/${friendlyURL}?filter_category_552298=${authorCategoryId}"><span id="author-full-name">${authorName}</span></a></p> 
52			<hr /> 
53		</#if> 
54	</#if> 
55	<#if authorJobTitle??> 
56		<#if authorJobTitle != ""> 
57			<p class="blog-author-title" id="author-job-title" >${authorJobTitle}</p> 
58			<hr /> 
59		</#if> 
60	</#if> 
61	<#if authorDescription??> 
62		<#if authorDescription != "" && authorDescription != "null" > 
63			<p class="blog-author-desc" id="author-job-desc">${authorDescription}</p> 
64			<hr /> 
65		</#if> 
66	</#if> 
67</div>